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Generation of lattice Wannier functions via maximum localization
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A method is presented for generating approximate lattice Wannier functions (LWF) for lattice
dynamics problems, using the dynamical matrix for a supercell as input. The lattice Wannier func-
tions fit selected phonon frequencies and eigenvectors exactly, are orthonormal, and are optimized
to be maximally localized. The method easily generalizes to the case where LWF centered on more
than one distinct chemical species are desired, as well as the case of solid solutions. The method is
successfully applied to a one-dimensional toy model.

PACS numbers:

I. INTRODUCTION

In many lattice dynamics problems, the temperature-
dependent physical properties are dominated by the low-
frequency phonons. For example, the low-temperature
cv ∝ T 3 heat capacity relationship in crystals arises
from the linear dispersion of acoustic phonons near zero
wavevector. A second example is the dielectric constant
of dielectrics. The phonon contribution to the dielectric
tensor for a crystal can be written in the form[1, 2]:
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where V is the unit cell volume, ε0 the permittivity of free
space, ωµ the (angular) frequency of phonon µ, ~Z?

µ the
electric polarization induced by phonon mode µ divided
by the phonon amplitude, and m0 an arbitrary mass that
appears in the definition of ~Z?

µ. In high-κ materials, the
dielectric constant is typically dominated by the contri-
bution of low-frequency zone-center optical phonons. A
third example is ferroelectric phase transitions. Typically
in ferroelectrics, the ground state is largely determined
by the freezing in of a particular mode which is unsta-
ble in the paraelectric phase[3]. To the extent that the
anharmonic coupling of the instabilities of the paraelec-
tric phase to other modes is small, the thermodynam-
ics of the ferroelectric phase transition is determined by
the properties of the unstable modes[4]. In all of the
above cases, the number of degrees of freedom of the
lattice dynamics problem, as it affects the temperature-
dependent physical properties, can be greatly reduced
by including only those degrees of freedom correspond-
ing to the relevant phonons[5]. Furthermore, as shown
by Rabe and Waghmare[4], these degrees of freedom can
be spanned by a localized “lattice Wannier function” ba-
sis set. The projection of the original Hamiltonian onto
the LWF yields the harmonic lattice dynamical part of
an “effective Hamiltonian” in a form amenable to Monte
Carlo and molecular dynamics simulations.

Despite their usefulness, the generation of LWF to date
has been largely done on a case by case basis. Difficulties

in making the generation of LWF more automatic include
symmetrization, localization [6], basis set completeness,
and, most importantly, the band mixing or “entangled
band” problem. Souza, Mazari, and Vanderbilt [7] dis-
cussed the entangled band problem for the case of elec-
tronic Wannier functions. Rabe and Caracas [8] have
discussed the entangled band problem for lattice Wan-
nier functions, and concluded that a practical solution is
to impose LWF locality and to fit only the relevant (i.e.
low frequency) parts of the phonon band(s) exactly.

In many cases, materials with the most useful proper-
ties are solid solutions. For example, temperature sta-
bility in dielectrics for microwave resonators typically re-
quires solid solutions. Ultrahigh piezoelectric constants
are found in solid solutions of Pb[Mg,Zn]1/3Nb2/3O3 with
PbTiO3. For such systems, LWF designed for solid solu-
tions would be useful in elucidating the physics respon-
sible for their properties.

In this paper, an automatic procedure is given for
generating LWF. As in the previous work by Rabe and
Caracas, the key idea is to impose LWF locality, while
fitting only the relevant part of the phonon bands ex-
actly (although it may be desirable to include additional
phonons). Furthermore, by eliminating symmetry as a
consideration in generating the LWF, and using the prin-
ciple of maximum localization only, the method easily
generalizes to solid solutions.

II. METHOD

To generate the LWF of a solid, one begins with
phonon information. Although it is desirable in principle
to know the full phonon dispersion (including eigenvec-
tors), this is not usually possible in practice. Instead, the
method presented here gives approximate LWF based on
phonon results for finite supercells. The required input is
the eigenvalues and eigenmodes of a supercell dynamical
matrix, as might be determined from first-principles (FP)
calculations on the supercell, FP linear response calcula-
tions on a primitive cell, or “interpolated” results for a
larger supercell using FP interatomic forces obtained for
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smaller (super)cells [9].
For a supercell with N atoms, let i label the DN

atomic coordinates (where D is the dimensionality of the
system, and, for simplicity, the position ri and Cartesian
direction coordinate α̂i are folded into a single label),
and j the DN normal modes. Let vj be the j’th dynami-
cal matrix eigenvalue (proportional to squared frequency)
and eji be the i’th component of the (normalized) dy-
namical matrix eigenvector for mode j.

The LWF determination problem is to fit the vj and
eji for a chosen subset of modes {ul} ⊂ {vj}, using a
set of supercell-periodic functions wki, where wki is the
displacement of coordinate i in basis function wk. The
wk become the exact lattice Wannier functions in the
limit of an infinite supercell.

There is no absolute criteria for which modes ul should
be included, but, for problems where the physics is dom-
inated by the low-frequency modes, it is necessary to in-
clude those modes for which νj is less than some cutoff
value (as discussed in Section IV, it may be desirable
to include some additional modes). Note that the su-
percell approach, in effect, replaces continuous phonon
dispersion branches with information on a discrete grid
in q-space. In fact, it is this focus on individual phonons
rather than phonon branches that makes it so easy to
generalize to solid solutions, etc.

There is also no absolute criteria for the set of positions
{rk} on which to center the {wk}. In many cases, certain
atomic species displaced in certain Cartesian directions
dominate the eigenvectors of the included modes. In such
cases, it is natural to have the LWF set comprise each site
{rk} on which an atom of the given species sits, and each
important direction of displacement α̂k.

To fit the selected eigenfunctions of the original ma-
trix exactly, one seeks (unknown) coordinates alk and
wki such that

∑
k alkwki = eli. There is no unique

solution for wki because different choices of {alk} lead
to different wki. To find the “optimal” set of wki, a
“localization criterion” is applied, namely, to minimize∑

ki w2
kid

2
ki. The distance metric d2

ki here is chosen to be
d2

ki = min((rk − ri + Rsupercell)2). Other metrics may be
considered, for example, “anisotropic” metrics where d2

ki
is a function of α̂k and α̂i as well as the distance between
the LWF centers.

Additional constraints are imposed to keep the func-
tions wk orthonormal and the coordinate sets alk or-
thonormal:

∑
i wkiwmi = 1, k = m;

∑
i wkiwmi = 0,

k 6= m;
∑

k alkank = 1, l = n;
∑

k alkank = 0, l 6= n.
The problem is then set up as a constrained minimiza-
tion problem. Using Lagrange multipliers, we write:
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One then needs to solve ∂f/∂wki = 0; ∂f/∂alk = 0;
∂f/∂λ1li = 0; ∂f/∂λ2k≤m = 0; ∂f/∂λ3l≤n = 0.

Since the above partial derivatives are nonlinear, an
analytic solution does not exist in general. To extract
a solution numerically, it is simpler instead to minimize
the function

F = 1 +
∑
ki

(∂f/∂wki)2 +
∑
lk

(∂f/∂alk)2

+
∑
li

(∂f/∂λli)2 +
∑
k≤m

(∂f/∂λ2km)2

+
∑
l≤n

(∂f/∂λ3ln)2.

By construction, F is minimized to 1 if and only if all
partial derivatives of f are zero. There may, however, be
more than one solution. A hypothesis for a reasonable
starting guess for the variables is: wki = 1 if rk = ri and
α̂k = α̂i, else wki = 0; alk = cleli for i such that rk = ri

and α̂k = α̂i, with normalization constants cl such that∑
k a2

lk = 1, and all Lagrange multipliers set to zero.
After the above results are obtained, the dynamical

matrix D can be replaced by D′, a reduced dynamical
matrix over LWF variables. The components of D′ are,
in bra-ket notation:

D′
km =< wk|D|wm > . (2.1)

It is straightforward to show that

< al|D′|an >=< el|D|en >= δlnvl; (2.2)

that is, the selected eigenvalues of the original dynam-
ical matrices are also eigenvalues of D′, and the corre-
sponding eigenvectors are related to the origin dynamical
matrix eigenvectors through the LWF. D′ also gives the
harmonic lattice terms of an “effective Hamiltonian” for
Monte Carlo or molecular dynamics simulations.

III. MODEL

The methods of this paper will be applied to a toy
model for the lattice dynamics of a one-dimensional chain
(D = 1). Figure 1 shows the toy linear chain model, cre-
ated so as the phonon dispersion would be qualitatively
similar to that often observed in ferroelectric perovskites
such as BaTiO3[10]. The chain has 4 atoms per primi-
tive cell: an “A” or “A′” cation at each x = integer n,
a “B” or “B′” cation at x = n + 0.5, and “C” anions
at x = n + 0.25 and x = n + 0.75. For simplicity, all
ions have mass m = 1, and the length of the unit cell is
set to a = 1. Defect and solid solution phenomena are
incorporated into the model through the distribution of
[A,A′] and [B,B′] ions on the corresponding sublattices.

The intersite force constants are given in Table I. The
force constants involving A′ and B′ are set to mimic cer-
tain common characteristics of perovskite solid solutions.
B′ is designed to be chemically very similar to B and to
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FIG. 1: Primitive cell of a one-dimensional toy model for
lattice dynamics.

create relatively minor perturbations of the phonon dis-
persion, as might occur for the substitution of one sim-
ilarly sized isovalent ion for another. A′ is designed so
that instabilities involving A′ off-centering (but not A
off-centering) will occur, as happens when Li substitutes
for K on the perovskite A site of [K,Li]TaO3.

TABLE I: Interatomic force constants in model. For C-C
interactions at distance 0.50, (A) and (B) indicate which ion
is between the two ”C” ions.

1 2 d12 FC 1 2 d12 FC

A,A′ A,A′ 1.00 -37.5 B,B′ C 0.25 25

A,A′ B,B′ 0.50 -15 B,B′ C 0.75 25

A C 0.25 -15 C C 0.50(A) -140

A′ C 0.25 70 C C 0.50(B) 40

A,A′ C 0.75 -15 C C 1.00 -55

B,B′ B,B′ 1.00 -107.5

B B,B′ 2.00 28.75

B′ B′ 2.00 37.5

Figure 2 shows the dynamical matrix eigenvalue dis-
persion for the “ideal” ABC2 chain. There is a single
unstable mode at q = 0, dominated by B participation.
The instability only extends through part of the Bril-
louin zone (BZ). The mode with largest B participation
at q = π/a is not the lowest one, but rather the second-
highest one (eigenvalue 360). Note the following analo-

FIG. 2: Phonon dispersion for the ideal ABC2 structure

gies with the case of BaTiO3 [5, 10]: In BaTiO3, there
are instability branches dominated by Ti motion that do
not extend throughout the entire BZ. Ti-dominated zone-
boundary modes, where they occur, are not always the
lowest-frequency modes at these points.

IV. RESULTS

The procedure for generating LWFs was applied to 4
structures within the toy model: (1) the “ideal” ABC2

cell, (2) a doubled cell with composition A2BB′C4, (3) an
octupled cell with composition A8B4B′

4C16, with the B
and B′ cations arranged in the quasirandom[11] arrange-
ment BBBB′B′B′BB′, and (4) an octupled cell with the
composition A7A′B8C16.

For a one-dimensional supercell of period Na, the BZ
goes from −π/(Na) to π/(Na). It is possible to plot
the dispersions of all the examples studied in this work
in a common zone from −π/(8a) to π/(8a), but that
yields complicated diagrams with 32 bands in each case.
For simplicity, we compare instead the density of states
(DOS) in each case, as shown in Figure 3.

The replacement of B with B′ leads to a gap in the
DOS just below ω2 = 0, a typical phenomena in period-
doubling perturbations. While the DOS in the quasiran-
dom case is similar, there is only a pseudogap, and the
structure of the DOS is more complicated. The replace-
ment of A with A′ gives an additional instability branch
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FIG. 3: Density of states of ω2 for the configurations studied

which is nearly dispersionless. Because of coupling of A′

to the other ions, the DOS is strongly perturbed over the
whole frequency range, with many more singularities.

LWF were then generated for each structure. In each
case, a (super)cell of length 8a containing 32 ions was
sufficient to generate LWF that reproduced very well the
phonon DOS in the low-frequency bands. Each structure
had a similar set of optical low-frequency modes domi-
nated by B, B′ and with ω2 < 10. Based on the anal-
ogy of the toy model to lattice dynamics for ferroelectric
transitions, where the modes of interest are the low fre-
quency optical modes (in particular the instabilities), all
supercell optical modes with ω2 < 10 were included in
the LWF fits. This frequency range encompasses the ad-
ditional A′-dominated branch in case (4). Based on the
ions whose motion dominates the low-frequency modes,
LWF centered on B and B′ sites were included in all
cases. One additional LWF, centered on the A′ site, was
included for case (4). In each case, there is a van Hove
singularity in the phonon DOS at ω2 ≈ 360 arising from
q = π/a-type B-dominated modes. Based on the prin-
ciple that the singularities in the phonon DOS of the
LWF-model should match the singularities in the origi-
nal DOS as much as possible, the corresponding mode
was included in each fit. Note that there is no absolute
criterion why these modes should be included. As long
as the number of modes fit per supercell is less than or
equal to the number of LWF centers, the procedure will
generate LWF that reproduce these modes, and as long

FIG. 4: Density of states of ω2 for the effective Hamiltonians
generated from the LWF for each configuration studied.

as the phonon DOS in the region that affects the physi-
cal properties is correctly reproduced, it does not matter
which higher-frequency modes are included.

In each case, the function F converges to 1. Using D′

and setting the interactions to zero for distances larger
than the maximum distance in D′ allows phonon DOS
and dispersions to be calculated from the effective Hamil-
tonian generated for each structure. For each case, the
calculated DOS are shown in Figure 4. The dispersion
generated from the LWFs for ABC2 is shown in Fig-
ure 5, and compared with the original full phonon dis-
persion. It reproduces the unstable part of the original
model extremely well, and rises smoothly to match the
A-dominated mode at q = π/a. The values for the LWF
displacement of the central cations and their nearest-
neighbor C anions are given in Table II.

V. DISCUSSION

The procedure for generating LWF succeeds in repro-
ducing the low-frequency phonon DOS for all of the one-
dimensional model test cases. The phonon dispersion in
the Brillouin zone or reduced Brillouin zone is also repro-
duced in each case. The results provide strong evidence
that LWF can be generated for arbitrary cation orderings
in solid solutions.

In principle, the method should work in three dimen-



5

FIG. 5: (Left side) Dispersion in ω2 of ABC2. (Right side)
Same as left side, with the effective Hamiltonian dispersion
added.

sions. Polarization of phonon eigenvectors in dimensions
D > 1, and the corresponding possibility for multiple
LWF components centered on the same ion, are tech-
nical issues to be resolved. Also, the method requires
minimization of a function of (2DNnµ + nµnw + n2

w +
nw/2 + n2

µ + nµ/2) dimensions, where nµ is the number
of modes to be fit and nw is the number of LWF cen-
ters chosen. This gives a practical limit to how large a
supercell can be chosen for the fit.

In the case of the ABC2 and A2BB′C4 structures, the
LWF have ”u” symmetry under reflection, and the LWF
for the same species with different centers are related
by translational symmetry. While these reflect the sym-
metry of the lattice, symmetry was not imposed by de-
sign. Rather, symmetry resulted from maximum local-
ization. In cases (3) and (4), in fact, LWF centered on
ions that are not on sites with reflection symmetry do not
have any reflection symmetry, and LWF on sites that
are not symmetry-related are not translationally iden-
tical (see Table II). Remarkably, even though all the
phonons selected for the fit preserve the center of mass
of the crystal, the individual LWFs, do not, in general
conserve the center of mass. The fact that LWF centered
on the same species are not in general related by symme-
try means that, in the effective Hamiltonian for a solid
solution, the interactions involving these LWF centers
will be environment-dependent.

TABLE II: Lattice Wannier functions generated from each
structure. Although the LWF extend over the unit cell, only
the components for ions within distance 0.25 from the central
ion are shown, as they are localized

structure ion position wx−0.25 wx wx+0.25

1 B (all) –0.233 0.860 –0.233

2 B (all) –0.232 0.860 –0.232

2 B′ (all) –0.206 0.898 –0.206

3 B 0.5 –0.231 0.859 –0.234

3 B 1.5 –0.237 0.860 –0.238

3 B 2.5 –0.234 0.859 –0.231

3 B′ 3.5 –0.211 0.880 –0.226

3 B′ 4.5 –0.235 0.860 –0.232

3 B′ 5.5 –0.201 0.899 –0.201

3 B 6.5 –0.232 0.860 –0.235

3 B′ 7.5 –0.226 0.880 –0.211

4 A′ 0.0 –0.491 0.706 –0.491

4 B 0.5 –0.068 0.916 –0.234

4 B 1.5 –0.249 0.854 –0.231

4 B 2.5 –0.236 0.861 –0.211

4 B 3.5 –0.246 0.832 –0.263

4 B 4.5 –0.263 0.832 –0.246

4 B 5.5 –0.211 0.861 –0.236

4 B 6.5 –0.231 0.854 –0.249

4 B 7.5 –0.234 0.916 –0.068

Tests where the centers of the LWF were inappropri-
ately chosen gave interesting results. For case (4), if A′

centers were not included in the LWF fits, neither the
density of the low-frequency states nor the phonon dis-
persion were correctly reproduced. For case (1), if the
LWF centers were initially put on the A sites, the final
solution had LWF centered on the B sites. Complete au-
tomation of the LWF procedure will require algorithms to
decide which low-frequency modes are essential to the fit,
where to center the LWFs, and, perhaps, which higher-
frequency modes to include in order to fit singularities in
the phonon DOS as much as possible.

VI. CONCLUSIONS

A simple, flexible, method has been presented for gen-
erating lattice Wannier functions and the harmonic lat-
tice dynamical part of the corresponding effective Hamil-
tonians, based on constrained LWF localization. The
method requires only that the user choose the sites on
which to localize the LWF, and which eigenmodes of a
supercell to exactly fit. When applied to various config-
urations of a toy 1D model, the method reproduces the
desired features of the full lattice dynamics problem in
each case. The procedure works equally well for simple
compounds, ordered solid solutions, and disordered solid
solutions.
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